Archivo por meses: febrero 2012

Explorer.exe en Windows

Hace poco tuvimos en mi trabajo la necesidad de sustituir el proceso explorer.exe de un portátil para que sólo mostrase una ventana con 3 opciones y que el usuario no pudiese hacer nada más.

El explorer.exe es un proceso que cuando se ejecuta al principio muestra el escritorio de Windows y en las sucesivas ocasiones muestra el explorador de ficheros.

Se puede sustituir fácilmente accediendo a la entrada del registro HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon y modificando el valor Shell por otro ejecutable.

El ejecutable debe estar normalmente en la ruta C:\Windows y puede ser cualquier programa con interfaz gráfica. El nuestro creaba una ventana que ocupaba todo el monitor, con un logotipo de fondo, sin marco y tenía varios botones para cargar otras aplicaciones, reiniciar y apagar.

Para labores de mantenimiento teníamos un botón que debía poner el escritorio de Windows cuando se pulsaba, y lo lógico era pensar que si desde nuestra aplicación ejecutábamos el fichero explorer.exe se mostraría, pero eso no ocurría y solamente nos aparecía el explorador de ficheros. Al final comprobamos que este comportamiento se debía a que el proceso explorer.exe sólo muestra el escritorio de Windows si se cumplen dos condiciones:

  1. Que no exista otro proceso explorer.exe ya ejecutándose.
  2. Que en el registro de Windows que he puesto antes esté apuntando a si mismo.

Por ello lo que tendremos que hacer para mostrar el escritorio es cambiar la variable Shell del registro expuesto anteriomente a explorer.exe, ejecutar el fichero C:\Windows\explorer.exe y pasados unos segundos volver a modificar la variable Shell con el nombre de nuestro ejecutable para asegurarnos que en el siguiente arranque se vuelve a cargar nuestro programa.

Probando el marco digital Parrot DF3120 (parte 3 y final)

Con este artículo termino de explicar cómo explotar todas las características de este marco digital. Este artículo lo dividiré en 3 partes debido a su extensión.

La primera parte consiste en explicar cómo usar la librería SDL (Simple Directmedia Layer) para dibujar en la pantalla. Lo bueno de esta librería es que es muy sencilla de usar y te facilita bastante el dibujar gráficos en la pantalla mediante programación.

La segunda parte trata sobre usar las entradas de información del marco. Se va a leer el estado de los 3 botones, del inclinómetro y la cantidad de luz que hay en el ambiente .

La tercera parte la he reservado para las comunicaciones. Dado que el marco tiene bluetooth y una tarjeta de red configurada voy a explicar cómo intercambiar información entre el marco y otros dispositivos.

1- Librería SDL

Antes de empezar a explicar, lo mejor será que ponga un vídeo, después el código fuente, a continuación cómo compilarlo, ejecutarlo y finalmente explicar su funcionamiento.

[VÍDEO]

[CÓDIGO]

[COMPILACIÓN]

Para compilar el programa, copiad el código fuente y guardarlo en la carpeta minifs con el nombre pruebasdl.c, después desde ese mismo directorio ejecutad el comando:

[EJECUCIÓN]

Una vez se haya creado el fichero pruebasdl, descargarlo en el marco junto con las siguientes imágenes:

tal y como explicaba en el anterior artículo y ejecutarlo. Si todo ha ido bien veréis lo mismo que en el vídeo. Para salir del programa simplemente pulsar las teclas CONTROL y C simultáneamente.

[EXPLICACIÓN]

Explicaré cómo funciona el programa. Un buen tutorial de SDL en español lo podéis descargar de aquí.

  • Se declaran los punteros SDL_Surface, que son los que contendrán las imágenes y el buffer de la pantalla.
  • La función SDL_Init se llama con el parámetro SDL_INIT_VIDEO para inicializar la librería SDL internamente.
  • La función SDL_GetError devuelve una cadena con el último error ocurrido en la librería SDL.
  • La función atexit con el puntero a la función SDL_Quit se llama para que, cuando la aplicación termine, se llame a la función SDL_Quit y libere todos los recursos usados por la librería.
  • La función SDL_SetVideoMode se llama para inicializar el buffer de la pantalla con los parámetros de anchura, altura, profundidad de color y que use la memoria de vídeo con la técnica de doble buffer (haciendo un OR de los valores SDL_HWSURFACE y SDL_DOUBLEBUF). Esta función nos devuelve la estructura SDL_Surface de ese buffer de pantalla.
  • La función SDL_ShowCursor se llama con el parámetro SDL_DISABLE para ocultar el puntero del ratón en la pantalla.
  • La función IMG_Load se llama con la ruta de una imagen como parámetro para cargar la imagen. Esta función nos devuelve la estructura SDL_Surface de la imagen.
  • La función signal se llama con el parámetro SIGINT y un puntero a una función para que se capture la pulsación de las teclas CTRL y C. Cuando se pulsen se llamará a la función salida que simplemente cambiará el valor de la variable salir. Esto se usa para poder salir del bucle principal y terminar el programa de una forma limpia.
  • La función SDL_BlitSurface se llama con una imagen, un valor nulo, el buffer de la pantalla y una estructura SDL_Rect como parámetros. Esto copia la imagen en el buffer de la pantalla en el lugar indicado por la estructura SDL_Rect.
  • La función SDL_SetAlpha se llama con una imagen, con los valores SDL_SRCALPHA y SDL_RLEACCEL y un número como parámetros. Esto modifica la transparencia de una imagen (valor 0 para transparente y valor 255 para opaca). No funciona bien con los PNG, por eso la imagen del sol es un GIF.
  • La función SDL_Flip se llama con el parámetro del buffer de pantalla para traspasar todos los pixels del buffer de pantalla a la tarjeta de vídeo y así mostrarlos.
  • La función SDL_Delay se llama con un número como parámetro para parar la ejecución del programa durante un tiempo especificado en milisegundos.
  • La función SDL_FillRect se llama con el buffer de pantalla, una estructura SDL_Rect y un color como parámetros para que dibuje en la zona determinada por la estructura SDL_Rect un rectángulo con el color especificado. En las animaciones se usa para eliminar el dibujo anterior al que se va a pintar y así dar un efecto de movimiento.
  • La función SDL_MapRGB se llama con el formato del buffer de la pantalla y 3 números como parámetros. Sirve para mapear un color RGB al formato del buffer de la pantalla y así adaptarlo a su profundidad de color.
  • La función SDL_FreeSurface se llama con una estructura SDL_Rect como parámetro para liberar todos los recursos utilizados por esta.

Con todo esto hemos logrado dibujar en la pantalla imágenes png y gif, además de animar dos de ellas en un bucle (una haciendo círculos gracias a las funciones trigonométricas de seno y coseno y la otra a fundirse mediante transparencia) a la espera de que el usuario pulse la combinación de teclas CTRL+C para salir del programa.

2- Entradas de información

Al igual que antes pongo un vídeo, después el código fuente, a continuación cómo compilarlo, ejecutarlo y finalmente explicar su funcionamiento.

[VÍDEO]

[CÓDIGO]

[COMPILACIÓN]

Hay que hacer lo mismo que en la COMPILACIÓN del apartado Librería SDL. Sólo que esta vez el fichero de salida se llama pruebaentradas y el del código fuente pruebaentradas.c.

[EJECUCIÓN]

Hay que hacer lo mismo que en la EJECUCIÓN del apartado Librería SDL, incluidas las imágenes si no las tenéis ya. Sólo que esta vez el fichero se llama pruebaentradas.

[EXPLICACIÓN]

En esta ocasión he aprovechado el código del anterior apartado y le he modificado para que responda a eventos. Ahora cada vez que se pulse un botón saldrá en la pantalla el icono correspondiente, se mostrará hacia que lado del marco está la gravedad y cuanta luz llega al sensor trasero.

Me centraré en explicar cómo he recuperado la información de las entradas de las que dispone el marco (botones, inclinómetro y fotoresistencia).

Si os acordáis en el primer artículo explicaba cómo acceder a la memoria del vídeo para escribir los píxeles de la imagen directamente en ella. Aquí lo que vamos a hacer es abrir el fichero /dev/mem ya que desde él podemos acceder a los registros del microprocesador que contienen la información de las entradas y poder configurarlas. Si queréis saber a fondo cómo funciona el microprocesador s3c2412 que gobierna el marco os podéis bajar su datasheet. Las entradas de los botones se pueden leer desde los pines 2, 3 y 4 del puerto F y las del inclinómetro desde los pines 9 y 10 del puerto G, en ambos casos son GPIO y los leeremos mediante polling. El valor de la fotoresistencia se puede leer del pin ADC0 y como indica el nombre es un ADC que leeremos igualmente mediante polling.

En la función inicializa_entradas inicializaremos los registros:

  • Con la función open abrimos el fichero /dev/mem como lectura y escritura.
  • Con la función mmap abrimos las posición de memoria 0x56000000 para poder acceder desde el espacio de usuario a los registros de configuración y de datos de los puertos GPIO y la posición de memoria 0x58000000 para leer los canales ADC. Estos números se pueden encontrar en las páginas 68 y 69 del datasheet que he puesto antes.
  • Para leer los puertos F y G debemos configurarlos antes. Para esto debemos acceder a las direcciones de memoria de configuración del puerto F (GPFCON 0x56000050) y del puerto G (GPGCON 0x56000060) e indicar qué bits serán de lectura. En el puerto F serán los bits 2, 3 y 4 por lo que el valor de configuración para este registro (según las página 275 del datasheet) será xxxxxx000000xxxx, o lo que es lo mismo, para dejar el resto de bits a su valor original y sólo cambiar los 6 bits de los botones hay que hacer una operación AND del valor 0xFC0F. En el puerto G serán los bits 9 y 10 por lo que el valor de configuración para este registro (según la página 276 del datasheet) será xxxxxxxxxx0000xxxxxxxxxxxxxxxxxx, o lo que es lo mismo, para dejar el resto de bits a su valor original y sólo cambiar los 4 bits del inclinómetro hay que hacer una operación AND del valor 0xFFC3FFFF.
  • Para leer continuamente el valor del canal 0 del ADC donde se encuentra conectada la fotoresistencia debemos configurar el registro ADCCON situado en la dirección de memoria 0x58000000.  Lo inicializaremos asignándole el valor 0x7FC2 (según la página 420 del datasheet). Finalmente leemos el valor del ADC para activarlo.

En la función lee_entradas leeremos el valor de las entradas y los guardaremos en una estructura llamada ENTRADAS:

  • Accedemos a las direcciones de memoria de datos del puerto F (GPFDAT 0x56000054) y G (GPGDAT 0x56000064), extraemos uno por uno los valores de los pines con una operación AND, desplazamos esos valores mediante shifting hasta dejarlos en el primer bit  y los vamos guardando en la variable correspondiente de la estructura. Los botones cuando están libres tienen un valor de 1, pero cuando están pulsados tienen un valor de 0. El botón izquierdo corresponde al pin 3, el botón central corresponde al pin 4 y el botón derecho al pin 2. El inclinómetro tiene un valor de 3 cuando el marco reposa sobre su base , un valor de 2 si reposa sobre el lado derecho y un valor de 1 si reposa sobre el lado izquierdo. No detecta cuando el marco reposa por el lado contrario a la base (que sería un valor de 0).
  • Para el ADC0 accedemos a su dirección de memoria de configuración (ADCCON 0x58000000), leemos su valor y comprobamos que el último bit está a 1 para saber si podemos leer el resultado de la conversión o todavía la está haciendo, si está a 1 leemos la dirección de memoria de datos (ADCDAT0 0x5800000C), nos quedamos con los primeros 10 bits y hacemos una conversión a 8 bits para que se pueda usar directamente en la función  SDL_SetAlpha.

Con todo esto hemos modificado el programa del apartado Librería SDL para que ahora sólo represente las imágenes dependiendo del estado de las distintas entradas que componen el marco digital.

3- Comunicaciones

Como en los casos anteriores pongo un vídeo, después el código fuente, a continuación cómo compilarlo, ejecutarlo y finalmente explicar su funcionamiento.

[VÍDEO]

[CÓDIGO]

[COMPILACIÓN]

Hay que hacer lo mismo que en la COMPILACIÓN del apartado Librería SDL. Sólo que esta vez el fichero de salida se llama pruebacomunicaciones y el del código fuente pruebacomunicaciones.c.

[EJECUCIÓN]

En el ordenador debéis tener bluetooth ya sea incorporado o mediante un usb y conexión a internet.

En el ordenador activar el ruteo de paquetes tcp/ip para la interfaz de red del marco (ejecutarlo todo como usuario root, en ubuntu con sudo -s)

En el marco activar la ruta por defecto de los paquetes tcp/ip

En el marco dejar visible a todos el bluetooth y permitir conexiones al marco

En el marco mostrar la MAC ADDRESS del bluetooth (para saber a donde se debe conectar el ordenador por rfcomm)

En el marco dejar en modo de escucha para rfcomm

En el ordenador conectarse al marco mediante rfcomm

En el ordenador descargarse el programa screen (si no se tenía antes)

En el ordenador conectarse al dispositivo rfcomm0 con el programa screen

En el marco ejecutar el programa

En el ordenador desde el programa screen escribir caracteres. ENTER para hacer salir el programa del marco.

Anotaciones

Tendreis que abrir una consola nueva tanto en el ordenador como en el marco después de ejecutar el comando rfcomm puesto que se queda permanentemente conectado hasta que se pulse CTRL + C.

Para salir del programa screen simplemente pulsad CTRL y A a la vez y después de soltarlos pulsad la tecla K.

[EXPLICACIÓN]

Por un lado se pretende conectar mediante bluetooth al marco usando las utilidades BlueZ mediante RFCOMM. Así conseguimos que desde nuestro ordenador podamos enviarle datos al marco.

Por otro lado pretendemos conectarnos a una página de Internet para recuperar una imagen y mostrarla en el marco.

La unión de ambas cosas es lo que habéis visto en el vídeo. Mientras escribo en el programa screen caracteres, estos se envían al marco mediante bluetooth. Despueś el marco los va concatenando y va llamando a una página web que he hecho a tal efecto para que vaya generando la cadena de texto en una imagen PNG. Esta imagen se la descarga el marco y posteriormente la muestra.

Gracias a las utilidades de BlueZ la conexión bluetooth ya se establece mediante comandos y nosotros nos tenemos que dedicar simplemente a abrir el fichero /dev/rfcomm0 y desde este escribir o leer con las funciones básicas que proporciona C para manejo de ficheros.

Las conexiones a Internet se consiguen mediante programación de sockets y esto nos da mucho juego para poder pedir información (descargar una imagen, llamar a un servicio web, etc.) y luego mostrarla en nuestro marco. En el ejemplo cuando se llama a la función carga_imagen hacemos una conexión http a https://www.sistemasorp.es/blog/imagen.php con la cadena pasada como parámetro y guardamos en el fichero texto.png la imagen PNG que se ha generado. No voy a explicar qué hace cada función de los sockets, pero si os recomiendo leer el mejor manual que hay en internet para saber cómo programarlos: Beej’s Guide to Network Programming.

Y aquí acaban esta serie de artículos esperando que os haya servido de ayuda para que podáis empezar a juguetear con el marco y sacarle muchas utilidades. Me gustaría que si hicieseis algo con el lo pusierais en los comentarios, además de vuestras dudas o lo que sea.

1º artículo

2º artículo

Recuperar una cámara Zaapa CIP-RW después de un fallo de actualización

Hace tiempo que mi amigo Roberto quiso actualizar su cámara IP (la cual compró por recomendación mía). El caso es que al actualizar el firmware el proceso falló y la cámara quedó inutilizada. Así han pasado ya muchos meses hasta que hace unos días me encontré con esta página que hablaba de cómo recuperar una cámara Foscam FI8908W cuando el proceso de actualización de firmware ha fallado.

Lo bueno de esta página es que habla de que las cámaras foscam (y la zaapa ciprw es una de ellas con el modelo FI8901W) no mueren del todo, sino que tienen un puerto serie escondido al que se puede acceder y comunicarse con una consola para cargar un firmware. Yo me he comunicado con la cámara con un conversor serie TTL a USB:

La solución ya estaba, sólo tenía que conseguir el firmware de la zaapa (ya que otros no valen) y decirle a mi amigo que me dejase su cámara para arreglársela. Pero no ha sido así de fácil y he tenido que pelearme con varios frentes.

El primero es el servicio técnico de Foscam. En el comentario 101 del anterior enlace un tal David comentaba que Doris de Foscam había sido muy amable y que le había dado los ficheros de recuperación. Yo probé la misma suerte con el servicio técnico de Foscam y esta fué la primera respuesta que obtuve:

Hi,

We do not have a model No. FI8901W camera, could you please double check the model No.?

Es decir, que no saben ni los modelos que han fabricado. Le dije que si existía ese modelo de cámara en su marca y me contesto esto otro:

Hi,

Sorry for my mistake. We have stopped produce this product for a long time. We do not have the firmware now. Sorry for this.

Vamos que no querían ayudarme en nada (David, que suerte tuviste…).

Buscando por Internet unos ficheros de recupercación para la zaapa o para la FOSCAM FI8901W no encontré nada. Pero por suerte encontré esto otro. Una forma de extraer de una cámara que funcionase su firmware a través de la consola serie oculta. El proceso fue pesado: me tuve que bajar el kermit 95 y buscar cómo demonios abrir una consola serie, después esperé un rato largo a que se ejecutara el script, convertir con el jedit una salida en otro fichero y finalmente pasar el convertidor de hexadecimal a binario, el cual tuve que compilar, modificar y compilar de nuevo para que funcionase. Todo esto para que al final no se hubiera decargado correctamente el firmware linux.bin y romfs.img necesarios para reprogramar la cámara estropeada, dando esta errores nada más arrancar.

Parecía que no iba a dar con la solución, pero encontré un programa que te descargaba automáticamente los ficheros necesarios del firmware. Lo ejecuté y parecía que había hecho bien su trabajo, pero pasó lo mismo que en el anterior párrafo aunque esta vez sólo con el fichero linux.bin. Sin embargo gracias a esta otra página descubro que el fichero linux.bin es en realidad un archivo .zip y que lo que había hecho está aplicación es comerse los últimos 168 bytes, asi que leyendo la memoria de  la cámara que funcionaba recuperé esos 168 bytes.

Finalmente seguí paso por paso el proceso de nuevo pero cambiando los comandos fx por estos:

Para Windows 7 como no existe el Hyperterminal, he usado el Tera Term.

Finalmente la cámara de mi amigo ha dejado de ser un pisapapeles y ha vuelto a funcionar, pudiéndola manejar ahora con Firefox, con su IPhone, etc.

Para evitaros las incomodidades por las que yo he pasado os dejo los enlaces de los ficheros de recuperación de la versión que le instalé a mi amigo y que es la última que proporciona Zaapa:

romfs.img

linux.bin

Embeded Web UI 2.0.0.16.bin